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COMMENT 

Dirac equation with Hulthen potential: an algebraic approach 

Barnana Roy and Rajkumar Roychoudhury 
Electronics Unit, Indian Statistical Institute, Calcutta-700 035, India 

Received 17 July 1990 

Abstract. The energy levels of the Dirac equation with scalar and vector Hulthen type 
potentials are obtained by means of algebraic perturbation calculations which are based 
upon the dynamical group structure SO(2, 1). Numerical results are given for the particular 
case when the strengths of the vector and scalar potentials are equal. 

1. Introduction 

The problem of the screened Coulomb potential is of great importance in all atomic 
phenomena involving electronic transitions because these potentials are known to 
describe the effective interaction in many-body atomic phenomena. Since the 
Schrodinger equation for such a potential does not admit exact solutions except for 
I = 0 [ 11, various approximate methods have been developed [2]. This nai've potential 
explains quite well the electronic properties of F'-colour centres in alkali halides [ 31. 
Moreover, the model of the three-dimensional delta function could well be considered 
as a Hulthen potential with the radius of the force going down to zero within a 
non-relativistic framework [4]. Nevertheless, relativistic effects for a particle under the 
action of this potential would become important, especially for strong coupling. To 
the best of our knowledge, the relativistic Hulthen potential has not been treated so 
far. Recently [ 5 ]  the existence of bound states for the S-wave Klein-Gordon equation 
for this type of potential have been shown. In this comment we shall find the energy 
levels of relativistic Hulthen potential via the SO(2, 1) dynamical group method [ 6 ] ,  
which has previously been applied mainly to non-relativistic potentials [ 71. 

2. Algebraic formulation 

The Dirac equation for a potential with a vector component V and a scalar component 
V, is [8] 

( W -  V ) G ( r ) = ( a . p ) c L ( r ) + ( m +  V,)PG(r)  (1) 

where $ ( r )  is a four-component wavefunction and W is the relativistic energy (in the 
units h = c = 1). 

The Dirac equation (1) can be separated in spherical polar coordinates, thereby 
reducing to a system of two coupled differential equations for the radial wavefunctions 
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F ( r )  and G ( r )  [9] 

dF ' F = ( V - W + m + V , ) G  
d r  r 

d G  x - + - G = ( W - V + m + V,) F. 
d r  r 

Here x = - ( I +  1) if the total angular momentum j = 1 +$ and ,y = 1 if j = I -f. 
Now eliminating F and writing W = E + m, we get from (2) and (3) 

G + ( E  - V)'G+2m(E - V)G-  V2(2m+ V,)G 
dr2 r2 

Now if we put successively 

G = rcp 

and 

in (4) the resulting equation will be 

r*+23-T1)$+(E- V)'nl,+2m(E- V)rJ/- V2(2m+ V2)rJ/ 
d r2  d r  r 

dV dV2 --+- x+ 1 - - E + 2 m - V + V 2 (  d r  d r )  

+- 3 1 r(--+-) d V  dV2 ' J/. 
4 ( E + 2 m - V + V 2 ) '  d r  d r  

We consider vector and scalar Hulthen type potentials which are written as 

(7) 

respectively, where a is the range of the potentials. 
Using (8) in (7) yields 

(2EVo+2mVo+2mSo) e-r'ar+ (V:-Si) e-,"" + r* 1 -e-'/" (1 - 
+ 

- (So- v,) e - r / a  1 

3 ( S o -  v,)' r* 
4 (1 a ' [ ( ~  +2m)(1  -e-r /")+ ( v,- so) 

- 
a [  (E + 2 m ) (  1 - e-'/") + ( Vo - So) e-'/"] (1 - e-'/") " 

+- (9) 
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Note that x (x+  1) = / ( I +  l),  thus the number 1, i.e. the degree of the ordinary spherical 
harmonics in terms of which spherical harmonics with spin are expressed, is nothing 
but the azimathal quantum number of Schrodinger’s theory [lo]. 

Now we can take the SO(2, l )  generators for this problem as 

T2=-i 1 + r -  ( ddr) 

Tl,  T2 and T3 satisfy the following commutation relations: 

[TI ,  T2] = -i T3 

and the Casimir invariant 

Q=T:-Tf-T:.  (14) 

Introducing the step operators 

T,= Tl+i  T2 (15) 

the unitary irreducible representation of SO(2, 1) generated by T,, T, is given by 

( T: - T: - T;)II, n )  = I (  I +  l)II, n )  (18) 

where n is the principal quantum number and I is the orbital angular momentum. The 
states 11)) = I I ,  n) are called the group states. Their relation with the physical states will 
be discussed later on. These group states are actual!y the basis vectors of the unitary 
irreducible representation of SO(2, 1). 

They satisfy the orthogonality relation 

(n’, l’ln, I ) =  S,, , ,S. . ,  (19) 

and the completeness relation 

Now the equation (9) can be expressed with the help of (10)-(12) as 

i i ( E ) ( & )  = 0 (21) 
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with 

f i ( E ) = ( ~ ~ ( E + 2 m ) ~ + A  exp[-(T3- T,)/a]+B exp[-2(T,- T , ) / a ]  

+ C  exp[-3(T3- Tl) /a]+Dexp[-4(T,-  T,)/a])[-(T,+ T,)  

+ ( E ~ + ~ ~ E ) ( T , -  T,)]+{F exp[-(T,- ~ ~ ) / a ]  

+Gexp[-2(T3- T , ) /a ]+H exp[-3(T,- T , ) / a ]  

- I expE-4( T3 - Tl)/a1H T3 - TI) - J exp[-( T3 - Tl)/a1x 

+ K exp[ -2( T3 - TI)]( T, - TI) + L exp[ -2( T3 - T,)/a]x 

+ M exp[ -3( T3 - Tl)/ a]( T3 - TI) + N exp[ -3( T, - T1)/a]x 

+ p exp[-4( T3 - TI)/ al(  T3 - TI) (22) 
A = 2 a 2 ( E  +2m)(  Vo-So-E  -2m) -2a2(E+2m)’  (23) 

B = a 2( E + 2 m )2  + a ’( Vo - So - E - 2 m )’ - 4a  2 (  E + 2 m ) ( Vo - So - E - 2 m ) (24) 

C = 2a2( E + 2m)( V, - so - E - 2m) + 2a2( V, - so - E - 2m )’ (25) 
D = a’( V, - so - E - 2 m )’ (26) 

F =  (2EVo+2mVo+2mSo)a2(E+2m)2  (27) 

G = ( 2EV0 + 2m Vo + 2mSo)[ 2a2( E + 2 m )( Vo - So - E - 2m) - a’( E + 2m)’] (28) 

H = ( ~ E V , S  2mvO+ 2ms0)[a2( V, - so- E - 2m)’ 

- 2a2( E + 2m ) ( V, - so - E - 2m)] (29) 

I = ~ ~ ( ~ E v ~ + ~ ~ v ~ + ~ ~ s ~ ) ( v ~ - s , - E  -2m)’ (30) 
J = ( S o -  Vo)a(E+2m) 

K = ( V i - S i ) a 2 ( E + 2 m ) ’ - ~ ( S 0 -  V0)’ 

L = (So - Vo)a( E + 2m) - (So - Vo)a ( Vo - So - E - 2m) 

M = 2 a  2( vi - si) ( E + 2 m ) ( V, - so - E - 2 m ) 
(33) 

(34) 

N = (So - Vo)a( Vo - So - E - 2m) 

P = ( V; - S; )U ’ (  V, - so - E - 2m 1. 
(35) 

(36) 
Here 16) denotes the physical state. Note that in writing (22 )  we have first multiplied 

Next we perform the tilting transformation [ 111 which is implemented as 
equation (9) on the left by a 2 [ ( E  +2m)(  1 - e-r’a) + ( Vo- So) 1 - e-”‘)’. 

(37) 

I+) = e-ieT214) (38)  

e - i eT2f i (~ )  eieT2 e-ieT2 - 
I * ) = O  

so that 

is the relation between the group state and the physical state. Taking 

f i ( ~ ,  0) = e - i e T 2 f i ( ~ )  eieT2 

d ( ~ ,  e)l$) = 0. (40) 

(39) 
equation (37) can be written as 
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Consequently equation (21) gets transformed into 

-- C exp( - 3(T3-Tilw) --exp ( - 
W a a 

+ F w  exp( - (T3 + Gw exp( - 2( T3 - 1) 
a 

+ ( E 2  + 2 m E )  w + F w  exp ( - ( 6 ~ T I ) W ) + ~ w e x p ( - 2 ( T 3 - T 1 ) W  

a 

wherein 

w =e-'. 

The transformation of equation (41) has been accomplished through the use of the 
Baker-Hausdorff-Campbell formula: 

(T3 * TI). (43) 

(I, nlb(~, e)li, n ) = o  (44) 

e-''T2(T3* T,)e'"z=e*' 

We now use the group states I+) = 11, n )  and write [6] 

where b ( E ,  0 )  is given by the bracketed portion of equation (41). 
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A method of obtaining in closed form the matrix elements of the exponential 
operator of equation (41) in the SO(2, 1) group state basis has been established by 
Bargmann [12]. The application of this method yields 

- n ' - n  

=Ant ,  (1 +E) (E)n ' -n2F1  ( I +  1 - n, -n -I, I +  n ' -  n, - 

n ' a n  (45) 

a 

- n ' - n  

= A n f n (  1 +:) (:)n'-n2F1 ( I +  1 - n, -n -1, l +  n ' -  n, 7 

n ' 2 n  (46) 

=Anfn (1 +--) 3w - n ' - n  ( 5 ) n ' - n 2 F ,  ( I +  1 -n, -n -1, l +  n ' -  

n ' a n  (47) 

a 
2w - n ' - n  

=Ant ,  (1 +--) ($)n'-n2Fl ( I +  1 - n, -n  -1,l + n ' -  n, - 

n ' a n  (48) 

where 

A,,, = 1 (T(n'-I)T(n'+/+ 1) n ' a  n. (49) 
T(n'- n + 1) T(n - Z)T(n + I +  1) 

The function 2Fl(a, b, c ;  2 )  is the Gauss hypergeometric function [13] which in 
(45)-(48) always reduces to a polynomial. Finally, the matrix elements of the energy 
functional a ( E ,  e )  can be calculated on account of the completeness relation (20) for 
the SO(2, 1) group states. Hence using equations (16)-(18) and (45)-(49) in equation 
(44) one can get the energy E!,:/ by solving the latter equation. However, the solution 
being 6 dependent, it has been shown by Feranchuk and Komarov [ 141 that the choice 

(50) 

(51) 
d2Ek?'(O) 1 , 

de2 e-e,,, 
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yields attractive results for the approximations of zeroth order. This method of treating 
8 as a variational parameter is just the scaling variational method, since T2 is essentially 
a generator of scale transformations. This has the added advantage that the lowest 
approximation satisfies both the virial theorem and the Hellmann-Feynman theorem 
[15]. Equations (44) and (50) together give E $ ) ( 8 )  for various values of l /a.  

3. Numerical results and discussions 

Here we apply the results of section 2 to the particular case when Vo = So in equation 
(8). This has been done to compare a part of our results with exact results. It is well 
known that when Vo = So the Dirac equation reduces to the Schrodinger equation and 
the S-wave eigenvalues for Hulthen potential can be calculated exactly [l]. In table 
1, we list the eigenvalues E!,?’ of lS,  2S, 3S, 2P, 3P and 3D states and for various 
values of A = l/a. The lS,  2s and 3s results are compared with the exact results 
obtained from Schrodinger theory. It is evident from the table that the agreement is 
good considering the fact that no higher-order correction has been taken into account 
(except for the 3s case for A = 0.2). It is expected that higher-order corrections would 
be significant for higher n values. Also it should be mentioned here that this method 
is general enough to be applicable to any potential with a vector and scalar part. 

Table 1. Spin averaged eigenvalues E$’ for the Hulthen potential whose vector and scalar 
components are identical and are given by Vv = V, = - V0/(er” - 1) (taking m = V, = 1). 
In parantheses are given for an S-state, the exact energy value. 
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